In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene.
نویسندگان
چکیده
Direct transfer of prodrug activation systems into tumors was demonstrated to be an attractive method for the selective in vivo elimination of tumor cells. However, most current suicide gene therapy strategies are still handicapped by a poor efficiency of in vivo gene transfer and a limited bystander cell killing effect. In this study, we describe a novel and highly potent suicide gene derived from the Saccharomyces cerevisiae cytosine deaminase (FCY1) and uracil phosphoribosyltransferase genes (FUR1). This suicide gene, designated FCU1, encodes a bifunctional chimeric protein that combines the enzymatic activities of FCY1 and FUR1 and efficiently catalyzes the direct conversion of 5-FC, a nontoxic antifungal agent, into the toxic metabolites 5-fluorouracil and 5-fluorouridine-5'monophosphate, thus bypassing the natural resistance of certain human tumor cells to 5-fluorouracil. Unexpectedly, although the uracil phosphoribosyltransferase activity of FCU1 was equivalent to that encoded by FUR1, its cytosine deaminase activity was 100-fold higher than the one encoded by FCY1. As a consequence, tumor cells transduced with an adenovirus expressing FCU1 (Ad-FCU1) were sensitive to concentrations of 5-FC 1000-fold lower than the ones used for cells transduced with a vector expressing FCY1 (Ad-FCY1). Furthermore, bystander cell killing was also more effective in cells transduced with Ad-FCU1 than in cultures infected with Ad-FCY1 or Ad-FUR1, alone or in combination. Finally, intratumoral injections of Ad-FCU1 into allo- or xenogeneic tumors implanted s.c. into mice, with concomitant systemic administration of 5-FC, led to substantial delays in tumor growth. These unique properties make of the FCU1/5-FC prodrug activation system a novel and powerful candidate for cancer gene therapy strategies.
منابع مشابه
Phosphoribosyltransferase Fusion Gene Transfer of a Bifunctional Yeast Cytosine Deaminase/Uracil Cancer Gene Therapy by Adenovirus-mediated In Vivo
Direct transfer of prodrug activation systems into tumors was demonstrated to be an attractive method for the selective in vivo elimination of tumor cells. However, most current suicide gene therapy strategies are still handicapped by a poor efficiency of in vivo gene transfer and a limited bystander cell killing effect. In this study, we describe a novel and highly potent suicide gene derived ...
متن کاملFusion of HSV-1 VP22 to a bifunctional chimeric SuperCD suicide gene compensates for low suicide gene transduction efficiencies.
Low transduction efficiencies of viral and non-viral vectors still remain a major limitation in suicide gene therapy. The HSV-1 tegument protein VP22 can spread from cells where it is produced to surrounding recipient cells, thus making it a promising tool for compensation of inadequate gene transfer efficiencies. In our previous study, we focused on the optimization of the cytosine deaminase (...
متن کاملThe oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene.
Vesicular stomatitis virus (VSV) has recently been demonstrated to exhibit significant oncolytic capabilities against a wide variety of tumor models in vitro and in vivo. To potentially enhance the oncolytic effect, we generated a novel recombinant VSV (rVSV) that expressed the fusion suicide gene Escherichia coli cytosine deaminase (CD)/uracil phosphoribosyltransferase (UPRT). rVSV encoding th...
متن کاملImaging transgene activity in vivo.
The successful translation of gene therapy for clinical application will require the assessment of transgene activity as a measure of the biological function of a therapeutic transgene. Although current imaging permits the noninvasive detection of transgene expression, the critical need for quantitative imaging of the action of the expressed transgene has not been met. In vivo magnetic resonanc...
متن کاملDeaminase/Uracil Phosphoribosyltransferase Suicide Gene Virus Is Enhanced by Expression of the Fusion Cytosine The Oncolytic Effect of Recombinant Vesicular Stomatitis
Vesicular stomatitis virus (VSV) has recently been demonstrated to exhibit significant oncolytic capabilities against a wide variety of tumor models in vitro and in vivo. To potentially enhance the oncolytic effect, we generated a novel recombinant VSV (rVSV) that expressed the fusion suicide gene Escherichia coli cytosine deaminase (CD)/uracil phosphoribosyltransferase (UPRT). rVSV encoding th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 60 14 شماره
صفحات -
تاریخ انتشار 2000